ENGR3630 - Transport in Biological Systems

Credits: 4 ENGR

Hours: 4-0-8

Required Requisites
Prerequisite(s): SCI1210

Recommended Requisites
Strong background in Calculus

For information contact: Zastavker, Yevgeniya

Course Description
Transport phenomena play a vital role in numerous biological processes. For example, the blood flow patterns arising from the particular geometry of branching blood vessels are thought to drive the formation of atherosclerotic plaques. Mass transport plays a role in events such as tissue differentiation during development, oxygenation of blood in the lungs, and glomerular filtration in the kidneys. The entire field of drug delivery has been driven and advanced by understanding transport of pharmacological agents within biomaterials and tissues. Further, combination of fluid and mass transport allow us to understand flow through porous media which is critical for understanding problems such as delivery of chemotherapeutics and tumor metastasis. The roles of transport in understanding and treating cancer will be a theme throughout this course. We will study and analyze mathematical models of these key biological problems using both analytical and computational tools. Through a series of readings and projects, this course will combine engineering fundamentals of mass, energy, and momentum conservation with modeling approaches to enhance exploration and understanding of fluid and mass transport within the body. This course will be of value to students interested in biology, mathematical modeling, and bioengineering.

Source URL: http://www.olin.edu/course-listing/engr3630-transport-biological-systems/

Links: