REDESIGNING COMPLEXITY

AT PFIZER

Complexity describes how difficult a particular clinical trial is to run. With relevant and accurate complexity metrics, Pfizer Global Clinical Supply (GCS) can optimally allocate **limited resources** among hundreds of clinical trials.

 manual supervised

 normalized averaging Model area specific calculation

· tables and graphs Output • sort and filter

WE DELIVERED...

- detailed recommendations for autofill
- · a Python program running the new model to calculate complexity scores
- tables and graphs visualized in Spotfire

COMPLEXITY SCORING AND VISUALIZATION

- · final score represents percent of trials that are less complex than this trial (i.e. trial is more complex than score% of trials)
- 0 to 1 scale allows for clear quartile distinctions area specific scores combine into an overall score
 - · scoring is question-independent; easily add or remove questions
- Packaging radar charts, scatter plots, box plots, and timeline plots provide visual information at multiple levels of detail
 - user can highlight specific trails for more information · filtering and selection isolate information to relevant areas

 - · tables and text boxes provide one-to-one trial comparisons

PAIN POINTS

Manual **Data Entry**

- manual entry necessitates a **limited question set** that lacks nuance
- lots of historical data exists in plain-text documents but it's prohibitively expensive and slow to manually enter it into the formatted data set
- updates are rarely captured and overwrite existing data

· overall score

Low Quality Calculations

- scoring does not account for missing data; trials with more data score higher even when the data present indicates low complexity, and vice versa
- **overly simple averaging scheme** means that most trials fall into a meaningless "medium" category

Text Heavy Visualization

- text heavy interface is a bad choice for comparing multiple trials
- too much irrelevant detail overwhelms the user; different users want to sort and filter for different details
- single dashboard page is **crowded** and doing too many things at once

WHAT

Large Language Models

Machine Learning Classification

FOR

processing "human language" documents

processing unstructured text chunks

HOW

- provide structured, plain text trial documents 2. treats the data as a structured document and analyses grammar and syntax
- 3. ask questions and receive answers in natural language ("How many countries will the product be delivered too?" -- "13 countries including ...")
- 4. convert answers into computer data (e.g. countries = 13) if clear, else flag question for manual review
- provide trial documents or other unstructured text 2. treats the data as an unordered bag of words/
- phrases and analyses word/phrase frequency 3. ask guestions in terms of word frequency and
- receive answers as probability ("vaccine" (12) vs. "biologic" (2) -- 86% certain drug medium is vaccine)
- 4. log final answer (e.g. drug = "vaccine") if sufficient probability, else flag question for manual review

IMPACT

autofilling data will significantly reduce manual data entry saving time, money, and eliminating frustration · data quality will improve as missing historical data can be automatically filled in

SUGGESTIONS FOR AUTOFILL WITH ML

- the number of questions asked per trial is no longer limited; expanded question set can capture more nuance
- automatic re-parsing when updated trial documents become available will keep data recent and relevant
- · manual intervention is limited to verification; data points with low certainty are presented to humans for review

PFIZER LIAISONS