VIEW 2.0: Direct Vision Assessment System

Reinventing the VIEW platform to empower users in vehicle blindzone safety.

Problem Area

Vehicle blindzone awareness is critical to the safety of anyone interacting with a vehicle, whether they are in the driver’s seat or outside. Vehicles contribute to an alarming pedestrian and cyclist safety crisis, and there is an annual increase in injuries and fatalities.

VIEW, a blindzone measurement tool for vehicles and a crowd-sourced database of blindzones, was first created by the 2017-2018 SCOPE team. From VIEW’s success, there was widespread demand for a more robust assessment and a fundamental rethinking of the VIEW system for accuracy, efficiency, and improved usability, bringing about VIEW 2.0.

Process

EVALUATE
Audit existing site and experience of measuring vehicles to identify problem areas. Learn about existing issues by conducting interviews with site users and vehicle researchers.

RESEARCH
Create and explore new methods to take vehicle measurements and calculate blindzones. Compare VIEW 1.0, Markerless, LiDAR, and April Tag methods for accuracy, accessibility, and ease of use.

DEVELOP
Redesign the website and conduct user tests for comprehension and ease of use. Develop the new LiDAR measurement experience and data processing back-end with new blindzone visualization processing.

INTEGRATE
Build the new VIEW 2.0 site by integrating the front-end, back-end, and measurement experience. Test our new site with users to validate our new design has improved usability.

System

Our system decreased blindzone inaccuracies by 85%, improved usability, and increased long-term site stability.

PHYSICAL EXPERIENCE
Take a 3D scan of vehicle using LiDAR technology
Record measurements of seat positioning

FRONT-END EXPERIENCE
Find information about VIEW and the importance of direct vision
See visualizations of vehicle blindzones for various Vulnerable Road Users (VRUS)
Access instructions to take a vehicle scan and seat measurements
Upload vehicle scan and measurements for processing

BACK-END
Process LiDAR scan and calculate vehicle blindzones
Produce blindzone visualizations
Develop website front-end and back-end

LiDAR Method

Take a 3D scan of vehicle.
Cast rays originating from eye position and find the nearest points where the ground is visible.
Produce blindzone visualizations using the nearest visible points for the ground and VRUs.

Our team:

Gabrielle Blake
Computing

Alexander Matsoukas
Computing

Claire Hashizume
Human-Centered Design

Myles Lack-Zell
Adaptive Product Design

Lynn Andrea Stein
Advisor

Alex Epstein
Volpe Liaison

Eric Englin
Volpe Liaison

Don Fisher
Volpe Liaison

Ali Brodeur
Volpe Liaison

Becky Mueller
IHS Liaison

Olin College of Engineering
SCOPE