Rationale

By using satellites in Medium Earth Orbit and Highly Elliptical Orbit, signal latency and setup cost are reduced, making internet more accessible. However, the ground station has to track the satellites for a consistent signal.

In addition, this ground station must be cost-efficient and user-friendly. This will allow manufacturing to scale with the increasing network.

Final System Cost: $750

Mechanical Design

Folded sheet metal parts are easier to manufacture

Compact & sturdy mechanisms

Ample electronics mounting space

Ground pole reduces form factor & cost

Electrical Design

Our custom power management board has the following advantages over the COTS parts used in the alpha prototype:

- Power loss detection to increase longevity of Raspberry Pi
- Streamlined power distribution and peripheral interfacing
- Modified motor control solution
- Robust physical connectors

Tracking Software

1) Scan

The ACU starts with the scan function, which moves in a left-to-right rastering pattern. If it detects a peak corresponding to a satellite frequency, it moves on to active tracking.

2) Active Tracking

During active tracking, the ACU uses a gradient ascent algorithm. Each step, it calculates the direction of the gradient by finding the change in signal strength in the vertical & horizontal axes, then moves in that direction.

3) Scheduler

When the satellite dips below the horizon, the ACU switches to the scheduler function. This interpolates the motor movements during active tracking and "backtracks" to find a new satellite.